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Vibrations in structures can lead to a number of problems, not the least of which can
be fatigue failures from excessive long term cyclic stresses. Passive techniques for vibration
control, though sometimes limited in their capabilities, have been the primary method used
in the past to attenuate vibrations. Recently active techniques have been developed to
provide vibration control performance beyond that provided by their passive counterparts.
Most often, the focus of active control methods has been to suppress displacements, and
little attention has been given to their effect on structural loads. This paper presents
an analytical and experimental study in which two optimal vibration control methods,
displacement control and reaction force control, are compared in their effect on
displacements and reaction forces in a flexible structure. It is shown that each control
method is effective in meeting its specific control objective, and that the two control
approaches have greatly different effects on the reaction forces in the system. Depending
on the disturbance frequency to be suppressed, the displacement control method in some
cases can drastically increase the reaction forces.
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1. INTRODUCTION

While there has been a great deal of research in active vibration control over the past two
decades, most of it has focused on suppressing vibrations as measured by displacements
or accelerations. These measures may be a good indicator of performance in many
situations, but in some cases where vibration transmission, fatigue, and wear are
important, a better target of control may be the dynamic support forces of the structure.
A particular example includes a rotating machine supported by bearings [1].

Bearings which are designed for their running speed under static loading conditions may
see marked increases in oscillating loads as rotating imbalance and shaft misalignment
problems arise. In rotating machines these dynamic loads can lead to increased wear on
the bearings, and in vibrating structures in general the nature of the dynamic support
loads affects the overall fatigue life of the structure. This importance of reaction forces
leads one to try to obtain a better understanding of how active vibration control techniques
affect them, and even better, to develop means of controlling them directly. Such control
would enable one to affect the way vibrations are transmitted through supports, or to affect
the fatigue life of such areas of a structure.

Since most of the vibration control literature has focused on displacement suppression
[2, 3], not much attention has been placed on what happens at the supports. Even in simple
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structures it is difficult to measure the support loads, so understanding the effects of
common active vibration control methods is difficult. Using such direct measurements in
a control scheme is even more difficult. This paper uses an approach from a previous work
[4] to accurately describe the dynamic reaction forces in a flexible structure, so knowledge
of the forces is available for any type of control law that is applied. In addition, a control
law is developed with which to directly suppress reaction forces based on the dynamic
reaction force expression. In this way, not only can support loads be analyzed for a given
control scheme, but the support loads themselves can be suppressed, and a comparison
can be made between the different control methods. For consistent comparison, both
control laws are optimal control approaches where the controller is designed to suppress
either displacements or reaction forces. The vibrations to be suppressed arise from an
unmeasurable harmonic disturbance, so a disturbance model is included in the controller,
as well as an estimator so that only position measurements are necessary.

In addition to comparing the controllers numerically, they are also implemented on an
experimental test rig. The test rig is a simply-supported, overhung beam that is
instrumented so that direct measurements of displacements and reaction forces are
available. Since most rotordynamic vibrations can be modelled by two uncoupled
equations of motion in two mutually perpendicular planes, the overhung beam apparatus
with support points and disturbance location similar to the theoretical model was chosen
for testing simplicity.

2. THEORETICAL MODEL DEVELOPMENT AND REACTION FORCE
DESCRIPTION

The system to be controlled in this work is shown in Figure 1, which is an overhung
beam with simple supports. The dynamics of this system are rich enough for a variation
of comparison cases to be run, and yet the system is simple enough to build and test for
experimental verification. In actuality the system can represent a simplified model of one
stage of a rotating machine. The disturbance is taken to be located between the supports,
and the control is applied in the overhung region of the beam. Two control forces are

Figure 1. Schematic of experimental test rig: (a) top view, (b) side view.
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applied to allow for the possibility of a moment control or combination force–moment
control if that is the optimal solution.

2.1.  

A finite element model (including 24 elements) is developed to give the equations of
motion for the system as shown in equation (1), where w are the free co-ordinates and wc

are the constrained co-ordinates:

$M
Mcc

MT
cc

Mc %6 ẅ
ẅc 7+$ S

Scc

ST
cc

Sc %6w
wc 7=6F

Fc 7. (1)

The vectors F and Fc are the externally applied forces and the constraint forces, respectively
[5]. The mass and stiffness matrices in equation (1) have been partitioned to correspond
to the free and constrained co-ordinates. Given the pinned nature of the boundary
conditions in the test rig, equation (1) can be broken into two equations,

Mẅ+Sw=F, Mcc ẅ +Scc w=Fc , (2, 3)

where the constrained co-ordinates are zero.
Since not all co-ordinates will be available from measurements in the experiment, and

implementing a 48-order state estimator (corresponding to the order of the model) is not
feasible, the model will be reduced to a four mode system [6]. First, the equations of motion
are transformed into their modal form with the transformation

w(t)=Fq(t), (4)

where F is the system orthonormal modal matrix and q(t) is the vector of the modal
co-ordinates. The model is then reduced by defining q(t) as q=[qT

r qT
t ]T where the

subscripts r and t denote retained and truncated modes, respectively. Substituting this
modal description for w(t) into equation (2) and multiplying by FT gives
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which, by orthonormality of the modes and distinct eigenvalues, can be written as
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r

FT
t %F, (6)

where Ir and It are identity matrices of the proper dimension, and Lr and Lt are the diagonal
spectral matrices.

2.2.   

If the actual control objective is to suppress forces in a structural system, rather than
deflections, then typical modal truncation methods may not be satisfactory. More modes
may be required to obtain an accurate representation of forces or stresses in a structure
than are necessary for deflections [7, 8].

For the system in this study, the undamped approximation to the shear reactions [9]
at the supports are given by Fc in equation (3). Substituting for the acceleration vector
in equation (2), the forces may be written as

Fc =Mcc M−1(F−Sw)+Scc w=Mcc M−1F+(Scc −Mcc M−1S)w

=Mcc M−1F+(Scc −Mcc M−1S)Fr qr , (7)
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where in the form shown in equation (3) the physical co-ordinate vector is written in
terms of the retained modes. The forces are essentially dependent upon the accuracy
of the co-ordinate vector. But the dimension of the co-ordinate vector is taken to be that
required to provide an accurate spatial description of the system and its motion. Since
only the retained modes are used in the reaction force description shown in equation (7),
it is much less accurate than that shown in equation (3). It is not practical, however, to
improve the accuracy by retaining more modes, because of the associated increase in the
order of the on-line state-estimator that would be required when the controllers are applied
later.

To obtain accurate reaction force estimates, the residual flexibility matrix will be used
[4, 10]. Rewriting equation (4) to solve for the modal co-ordinates gives

w=Fr qr +Ft qt =Fr qr +Ft (qt )static +Ft (qt )dynamic , (8)

where (qt )static and (qt )dynamic represent the static and dynamic contributions for the truncated
mode solution. If the dynamics of the truncated modes in equation (8) can be neglected
because their frequencies are much larger than the disturbance frequency range, then the
displacement vector can be written as

w=Fr qr +Ft (qt )static . (9)

From equation (6) the static contribution from the truncated modes is given by

(qt )static =L−1
t FT

t F. (10)

Therefore, the displacement vector can be written as

w=Fr qr +Ft L−1
t FT

t F. (11)

In equation (11), the second term of the right side is composed of the truncated modes, and
should be written in terms of the retained modes. Note that since equations (5) and (6)
show that FTSF=L, one has S=F−TLF−1, and

S−1 =FL−1FT =Fr L−1
r FT

r +Ft L−1
t FT

t . (12)

Finally, the displacement vector can be written as

w=Fr qr +(S−1 −Fr L−1
r FT

r )F, (13)

where the term in parentheses is the residual flexibility [10], and it accounts for some
of the dynamics of the truncated modes. This information can greatly improve
the reaction force representation [4]. The residual flexibility can be substituted into
equation (7) to form the reaction force description (shown in equation (14)) to be used
in the control laws

Fc =Mcc M−1F+(Scc −Mcc M−1S){Fr qr +(S−1 −Fr L−1
r FT

r )F}. (14)

3. OPTIMAL CONTROLLER DESIGNS

Two Linear Quadratic Gaussian (LQG) optimal controllers are used in this study, one
which minimizes beam displacements and one which minimizes reaction forces. Each
controller is based on a state-space model of the system, which includes a model of the
persistent disturbance and, for the experimental work, a model of the smoothing filter used
on the output channel. In the following sections, the state-space model will be completed
and then the individual control laws will be developed.
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3.1. -       

Before completing the state-space model for the flexible structure, damping was added
to match the experimental system. Modal damping coefficients of the form zv2

i were used
where zE 0·001 for all modes (z for first mode was found experimentally by logarithmic
decrement). By combining the damping terms through a modal damping matrix Cdamp

with the retained modes of equation (6), the system model can be written in state-space
form as

ẋs (t)=As xs (t)+Bs u(t)+Gs f(t)

=$ 0
−Lr

I
−Cdamp %xs (t)+$ 0

FT
r Fu %u(t)+$ 0

FT
r Ff %f(t). (15)

The state vector is defined as the vector of retained modal co-ordinates, xs =[qT
r q̇T

r ]T.
The external forces, F=Ff f(t)+Fu u(t), have been separated into disturbance, f(t), and
control, u(t), parts, which are applied in different locations.

The output equation for this state-space system is written as

y(t)=Cs xs (t)+D1 u(t)+D2 f(t), (16)

where y(t) is taken to be either displacements or reaction forces. If displacements are the
desired output, then Cs is simply a conversion from modal to physical co-ordinates of the
form Cs =[C1Fr 0]T, and D1 =D2 = 0. The matrix C1 is the position matrix of the sensors,
so if the output (sensor) locations correspond exactly to the physical co-ordinates, then
C1 = I. If, on the other hand, the desired output is the reaction forces, then (using the
development from the previous section) the output matrices in equation (16) become

Cs =[(Scc −Mcc M−1S)Fr 0],

D1 =Mcc M−1Fu +(Scc −Mcc M−1S) (S−1 −Fr L−1
r FT

r )Fu ,

D2 =Mcc M−1Ff +(Scc −Mcc M−1S) (S−1 −Fr L−1
r FT

r )Ff . (17)

3.2.   

Before assembling the complete system model, two additional items need to be included:
the disturbance and the smoothing filters. In this work, since the disturbance is not
measurable, the system model will be augmented with a disturbance model so that the
disturbance states may be estimated and used in the controller. The approach, which can
be found in the literature [11, 13], involves modelling the disturbance as the output of a
filter excited with white noise. This approach works well for harmonic-type disturbances
such as those of interest here. The effects of errors in the modelled disturbance frequency,
which will likely degrade estimator performance, have not been considered in this work.
However, for a rotating machinery application, the disturbance frequency should be easily
measurable.

In the experimental portion of this work, the control laws are implemented with a digital
computer, so a low pass filter is included as a smoothing device to eliminate the effect of
the zero order holds on the output of the computer. The low-pass filter has a simple first
order design with a transfer function of

ū(s)/u(s)=G0 vc /(s+vc ), (18)

where u(s) is the output of the digital-to-analog (D/A) converter channel, ū(s) is the control
voltage sent to the power amplifiers, and vc is the corner frequency of the low-pass filter.
In the experiments described later, two control actuators are used with one low-pass filter
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on each control channel. The system model is augmented to contain the smoothing filter
dynamics.

The plant model of equation (15) can now be augmented by the disturbance and
smoothing filter models to give a complete system description as

&ẋs
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ẋd '= &As
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0

Bs Cf

Af

0
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0
Ad '&xs
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xd '+ & 0Bf

0'u+ & 0
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y=[Cs D1 Cf D2 Cd ]&xs

xf

xd '+ v2 (t), (19)

where v1 (t) and v2 (t) are noise, and the variables with subscripts d and f represent
dynamics or states for the disturbance and filter models, respectively. Equation (19) can
be rewritten as

ẋ=Ax+Bu+Gv1, y=Cx+ v2. (20)

Note that the output matrix C is of the form [Cs D1 Cf D2 Cd ], where the sub-matrices are
defined earlier in equations (16, 17).

3.3. - 

Minimizing displacement with the LQG control approach is straight-forward. The
control design process, as outlined in a number of references [14], involves minimizing a
cost functional

J= 1
2 xT

tf S0 xtf +
1
2 g

tf

0

[xT(t)Qx(t)+ uT(t)Ru(t)] dt (21)

given the constraints provided by the system governing equations (19). This
process produces the state-feedback gain matrix, K, used in the optimal control law
u=−Kx.

The control design process becomes one of selecting the weights Q and R. For
displacement control in this work, Q and R are chosen to be diagonal matrices where the
elements of Q are chosen to penalize modal displacements and velocities, and the elements
of R penalize the amount of control effort. The magnitudes of Q and R determine relative
weights on states or control respectively. The actual values given for Q and R in this work
will be given in a later section.

3.4.  - 

In the case of minimizing reaction forces, the performance index given in equation (23)
must be changed. In this case the performance index will be written in terms of a control
variable z(t) defined to be the reaction forces, which was developed earlier (equation (14))
and is repeated here in a general form as

z(t)=Fc =Cx+Du. (22)

Equation (22) includes the augmented disturbance states and the residual flexibility
matrix in C and D will be 0 for this specific work because the control effort is written in
terms of the filter states in the state vector. Using this expression for the control variable,
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the performance index becomes

J= 1
2 xT

tf S0 xtf +
1
2 g

tf

0

[zT(t)Q*z(t)+ uT(t)R*u(t)] dt. (23)

The weighting matrices Q* and R* are diagonal and penalize the reaction forces and
control inputs. The difference between Q* and Q is that Q* penalizes reaction forces
directly while Q penalizes states directly. For this work, Q* has dimension 2×2 since there
are two reaction forces to be controlled, and is of the form

Q*=$q11

0
0
q22 %, (24)

where q11 and q22 each penalize one of the reaction forces.
Once the penality matrices have been determined for equation (23), the LQG control

design process is carried out just as for the displacement-minimizing controller [14] to
produce the state feedback gain matrix, K, for the control law, u=−Kx.

2.5.     

Since not all states are measured in the experimental system, a state estimator is used
to generate the unknown states for the full-state feedback control law. This estimator
is used in the numerical simulation as well. The LQG approach used to design the
estimator is well documented in the literature [15] and produces an estimator gain
matrix, L, which is used in the estimator equation

x̂
.
=Ax̂+Bu+L(y− ŷ), ŷ=Cx̂, (25)

where x̂ and ŷ are the estimated state and output vectors, respectively, so that the control
law is implemented as u=−Kx̂.

Note that since both the numerical simulations and the experiments are implemented
in discrete-time, the controller and estimator designs are carried out in the discrete-time
domain [11].

4. EXPERIMENTAL SETUP AND PROCEDURE

The test rig for this work is shown in Figure 1. The rig is made up of a steel beam with
dimensions 3·125×25×610 mm and boundary conditions that approximate simple
supports with 1/4 of the beam length overhung on one end. The first six natural frequencies
of the system, determined experimentally and numerically, are shown in Table 1. Special
knife-edge holding devices were designed to emulate the simply-supported condition
for the beam. As shown in Figure 1, a compression screw was used at each support to
clamp the beam between the knife edges. This also served to preload the load cell for
measurement. In this test rig the actual support forces are measured using piezoelectric

T 1

Experimental and numerical natural frequencies (Hz) for the test rig

1 2 3 4 5 6

Experiment 29·6 71·2 167 332 528 636
Numerical 29·3 72·4 158 323 513 627
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load cells (PCB model 208) shown in Figure 1. The load cells and the resulting forces
developed at the supports were tested in the rig by quasi-statically applying measured loads
at the points of the disturbance actuator and at the right-most control actuator (center
of the span and overhung end, respectively) in Figure 1. The support forces measured by
the load cells were compared to the reaction forces anticipated by a static analysis of the
beam (assuming simple supports) for each applied load. The load cell measurements were
not used in the feedback control laws, but rather were used to test the online reaction force
estimates, and to verify and compare the performance of the control laws.

Beam displacements were measured using inductive sensors (Kaman model KD-4000)
located at positions of 150, 170, 280, 300, 480, and 500 mm from the left end of the beam.
These were the only measurements used in the control law, as all other variables (including
disturbance force, beam velocities, and reaction forces) were estimated as described in a
previous section.

Both disturbance and control forces are applied to the beam through electromagnetic
shakers (Ling Dynamic Systems model 203B). The disturbance actuator is located 229 mm
from the left end of the beam (midway between the supports), and the two control
actuators are located in the overhung region of the beam at positions of 554·5 and 610 mm
from the left end of the beam. All control forces are applied through stingers (0·8 mm
diameter by 76·2 mm length) to reduce the effects of transmitted moments from the
shakers.

All computation and control was carried out on a 80486-based computer equipped with
National Instruments ATMIO-16F-5 data acquisition boards. The sample rate was 600
samples/s.

Figure 2 shows a schematic of the experimental procedure for any given vibration
control test. The harmonic disturbance, originating at the function generator, was passed
through a power amplifier and then to the disturbance shaker to generate the excitation
on the beam. Three different disturbance cases were used, with frequencies of 10, 20, and
40 Hz (spanning the fundamental frequency of the beam), with corresponding force
magnitudes of approximately 2·3, 1·5, and 1·5 N, respectively.

The resulting beam vibrations were measured by the displacement sensors and by the
load cells, and were acquired by the computer. The estimator in the computer used the

Figure 2. Schematic of experimental control procedure.
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displacement signals to produce real-time estimates of modal positions, modal velocities,
and disturbance states which were then used in the optimal feedback control laws to
generate the control signals. The control signals were sent through the D/A converter
to the smoothing filters, then to the power amplifier (with a gain of 2·5), and then to
the control shakers where control forces were applied to the beam. In the ‘‘uncontrolled’’
cases, the control actuators were still attached to the beam, but no control voltages were
applied.

5. RESULTS AND DISCUSSION

This section presents the numerical and experimental results from applying the
controllers to reject a harmonic disturbance from reaction forces and displacements in
the beam test rig. In the following three subsections, the results of three different
controllers will be shown in response to a 10 Hz disturbance. The controllers are
displacement suppression controller, first support load controller, and second support
load controller (where the terms ‘‘first support’’ and ‘‘second support’’ from here on
will mean the left-most and right-most supports, respectively, in Figure 1). The last
section will present a compilation of results for all controllers for all three frequency
excitations.

5.1.   

The purpose of the displacement suppression controller is to minimize displacements of
the beam in spite of the disturbance. The performance index penalties in equation (21) are
chosen such that Q=5·0E4 I12×12 (the dimension of the plant is 12) and R= I2×2 (there
are two actuators). This arrangement directly penalizes the system states, which are modal
amplitudes and velocities.

Figure 3 shows experimental time histories for a 10 Hz, 2·3 N amplitude disturbance
when the displacement suppression controller is applied. In each plot, a short (01·4 s)
segment of the uncontrolled response is shown, followed by the controlled response.
Figures 3(g, h) show the simulated and experimental results for the beam displacement,
which is measured midway between the two supports (the point at which the
disturbance is applied.) Note that there is very good agreement between the numerical and
experimental results. Both the experimental and numerical results show that for this
controller, there is approximately a 40% reduction in displacement when the controller
is applied.

Figures 3(a, c, e) show the response of the first support load, where Figure 3(a) contains
the simulated response, Figure 3(c) shows the actual experimentally measured response,
and Figure 3(e) shows the experimentally estimated load. Figure 3(b, d, f) show the
corresponding results for the second support load. Note again the agreement in all of the
response plots, not only between the simulated and experimental results, but also the
agreement between the estimate of the loads and the true loads as measured by the load
cells.

Note from the figures that when applying the displacement suppression control scheme,
the amplitude of the first support load is slightly reduced in the process, while the second
support load is greatly increased (by a factor of 01·5). This is because the control force
required to minimize displacements at 10 Hz causes a reaction at the first support that
slightly cancels the effect of the disturbance. At the second support, on the other hand,
the two sets of forces are almost in phase, so the combined effect is an increase in reaction
force. This result can be seen in Figure 4 which shows a sample of the first support load
response (from numerical simulation) when only the 10 Hz disturbance is applied and also
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Figure 3. Results from control of displacement, showing (a) first simulated load, (b) second simulated load,
(c) measured load in support 1, (d) measured load in support 2, (e) estimated load in support 1, (f) estimated
load in support 2, (g) simulated mid-span displacement, (h) measured mid-span displacement.

when only the control force (that would be used for displacement control of the 10 Hz
disturbance) is applied. The same set of results is also shown for the second support load.
It can be seen from the phase of the plots that the control has a cancelling effect in the
first support, but there is an additive effect in the second support.

Figure 4. Independent effects of disturbance and control forces in first and second support for displacement
minimizing control: ——, response due to disturbance; · · · · , due to control forces.
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As expected, if a displacement minimization control method is used, the dominant modal
or physical displacement response is suppressed, but dynamic support loads, in particular
the second support load in this case, can be increased in the process.

5.2.    

The purpose of the support load controllers is to minimize the dynamic reaction forces
in the beam supports caused by the disturbance. This section presents the results of a
controller designed to suppress solely the first support load, while the next section focuses
on the second support. To suppress the load in the first support, the performance index
in equation (23) is designed such that

Q*=$3·0 0·0
0·0 0·1%. (26)

Recall that Q* penalizes the two reaction forces directly, so for the first support load
controller, the first diagonal component of the weighting matrix is emphasized.

The results of this case are shown in Figure 5 (for 10 Hz, 2·3 N disturbance).
Figures 5(a, c, e) show that the first support load is reduced (by a factor of 035%) when
the first load controller is applied. In this case the beam displacement (Figures 5(g, h)) is

Figure 5. Results from control of support load 1, showing (a) first simulated load, (b) second simulated load,
(c) measured load in support 1, (d) measured load in support 2, (e) estimated load in support 1, (f) estimated
load in support 2, (g) simulated mid-span displacement, (h) measured mid-span displacement.
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suppressed much as in the case where it was the control objective. In addition, the second
support load is again increased (by a factor of 01·5; Figures 5(b, d, f)).

In this case, the control effort required to cancel the effect of the disturbance at the first
support is approximately the same as that required to suppress displacements. In applying
that control effort, the resulting loads from the control and disturbance add at the second
support, and result in increased dynamic reaction forces there. While this is only one case
of frequency and loading conditions, it highlights the fact that one must be mindful of the
effect of a vibration controller on the support loads if those loads are important factors
in the health or overall vibration response of the structure.

5.3.    

In this section, the controller is designed to suppress solely the second support load.
To suppress the load in the second support, the performance index in equation (23) is
designed such that

Q*=$0.1 0·0
0·0 3·0%. (27)

This penalty matrix is the reverse of that shown in equation (26), so that now the second
diagonal element is emphasized in order to penalize the second support reaction force.

The results of this case are shown in Figure 6 (for 10 Hz, 2·3 N disturbance).
Figures 6(b, d, f) show that the second support reaction force is reduced (by 050%), while
there is very little noticeable change in the first support reaction force (Figures 6(a, c, e)),
and a small increase in displacement amplitude (Figures 6(g, h)).

In this case, the control effort that is required to reduce the effect of the disturbance
in the second support is a combination of force and moment (considering both control
actuators) and has very little effect on the beam displacement or on the load in the first
support.

The reason for the different effects of the controllers can be seen another way by
Figure 7, which shows the relative phases of the disturbance and control forces.
Suppression of displacement and the first reaction force requires similar phasing between
control and disturbance forces, while suppression of the second reaction force requires an
entirely different set of forces.

5.4.   

The purpose of this section is to summarize the data from the 10 Hz excitation case,
and to provide the results of two more cases, 20 and 40 Hz, so that a broader picture
of the physical effects of the controllers can be obtained. It was shown previously that
while the displacement controller can effectively suppress beam vibrations, it can
simultaneously increase the support loads, which could be harmful to the structure. In this
section, two more frequency excitation cases will be presented which support the idea that
displacement and reaction force control are not necessarily compatible. In addition, it is
shown that the outcome is very much frequency dependent. That is to say that the result
is not always an increase in second support load for displacement or first support load
minimization, but perhaps an increase in first support load for displacement minimization,
or some other combination, depending on the frequency of the excitation. The underlying
cause is the modal behavior of the structure.

Figure 8 summarizes the results from the previous three sections. There is a set of data
for each of the response variables, beam displacement (at a location midway between the
supports), first support load, or second support load, for each of the control tests. The
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Figure 6. Results from control of support load 2, showing (a) first simulated load, (b) second simulated load,
(c) measured load in support 1, (d) measured load in support 2, (e) estimated load in support 1, (f) estimated
load in support 2, (g) simulated mid-span displacement, (h) measured mid-span displacement.

data is the mean amplitude of the response of each variable, averaged over five trials.
For each response variable, there are four sets of data: one for each type of control
applied, including no control (‘‘open loop’’), displacement control (‘‘disp’’), first support
load control (‘‘first’’), and second support load control (‘‘second’’). Within each data set
for first and second support load there are three data points: experimental estimation,
experimental load cell, and simulation. For the beam displacement response variable, only
two data points are shown, experimental measurement and simulation, since no estimation
is needed for that variable. First note that there is good agreement between the load
estimation, the load measurement, and the simulation (for any given test for each of the
variables, all the data points are close together). The overall height of the data points
for a given variable, then, indicates whether that variable increased or decreased with
each test as compared to the open-loop case. Note that the trends for the 10 Hz case are
exactly the same as described in the previous sections. For example, the second support
load is increased for displacement or first load control, and is decreased for second load
control.

Figure 9 shows the results of the 20 Hz (1·5 N) disturbance case. For the displacement
controller design, the weighting factors used are Q=1·0E4I12×12. The second support load
controller uses the same weighting factors as in the 10 Hz case, while for the first load
controller, the first diagonal element in Q* is changed to 1·0 from that shown in equation
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Figure 7. Phase comparison of displacement and control forces: (a) displacement control, (b) first support load
control, and (c) second support load control ( ——, disturbance force in each support; · · · · , control force in
first support; – · –, control force in second support).

(26) to prevent saturation of the control force in this case. There is no significant difference
between the 10 Hz and 20 Hz results. The trends seen in the 10 Hz case still hold because
the disturbance frequency is still below the 29 Hz fundamental frequency of the beam, and
the effective modal characteristics of the beam’s response are unchanged.

The results of the 40 Hz (1·5 N) disturbance are shown in Figure 10. The weighting
factors used in the controllers in this case are the same as those used in the 10 Hz case.
The 40 Hz harmonic disturbance is above the first natural frequency of the beam, so the
closed loop results are different and more complex than in the previous cases, and
demonstrate why the reaction force behavior is so interesting.

In the previous cases, displacement control and first support load control were very
compatible. In this case, however, the first support load is greatly increased (by more than
a factor of 2) when displacement control is applied. In addition, the displacement
controller still has the effect of increasing the second support load (even more than in the
lower frequency cases), but the first load controller no longer has that harmful effect. In
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Figure 8. Average magnitude of (a) first support load, (b) second support load, and (c) mid-span displacement
for 10 Hz excitation ( q, estimate; w, measurement; r, simulation).

fact, the first load controller in this case works to slightly reduce the second support load.
Finally, the second support load controller greatly increases the amplitude of the first
support load (by more than a factor of 2) for the 40 Hz case, where it had very little effect
on the first support load in the lower frequency cases.

Figure 9. Average magnitude of (a) first support load, (b) second support load, and (c) mid-span displacement
for 20 Hz excitation. Key as for Figure 8.
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Figure 10. Average magnitude of (a) first support load, (b) second support load, and (c) mid-span displacement
for 40 Hz excitation. Key as for Figure 8.

The reason for the differences in results is attributed to the change in vibration response
of the beam as the disturbance frequency increases. When the beam is excited below its
first natural frequency, the response is first mode dominated, and the control effort
required to suppress any particular variable may increase or decrease the other variables
as described above. When the excitation frequency is increased to 40 Hz, the response,
while still first mode dominated, has a much different phase than before. For this reason,
the required control effort may now add to the disturbance at a particular variable where
there was a cancellation before. For example, Figure 11 shows the same information as
was shown in Figure 5 (independent contributions to reaction forces for disturbance- and
displacement-suppression control) for the 40 Hz case. It is clear from these plots that there
is still an additive effect in the second support, and for the first support the control force
overwhelms the disturbance and causes an increase in load where there was cancellation
before.

Figure 11. Independent effects of disturbance and control forces in first and second supports for displacement
minimizing control: ——, response due to disturbance; · · · · , due to control forces.
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As the disturbance frequency increases further, there are even more possibilities of
increases or decreases in variables for the various control schemes as other modes increase
their contributions to the response, although such cases were not tested in this study.

6. CONCLUSIONS

This paper has presented separate techniques for actively suppressing displacements
or reaction forces in a flexible structure. Both methods are optimal control techniques
that utilize full-state estimators. Direct measurement of structural forces can be very
difficult in many applications, so control or cancellation schemes are difficult to implement
without a force estimate. A technique for estimating the support loads was used, based
on prior work which used the residual flexibility matrix to improve the reaction force
expression. This expression was used to develop the reaction force suppression control law,
as well as to provide information about the reaction forces when only beam displacement
measurements are available under a given control situation. The methods have been
implemented experimentally and through numerical simulation on a simply supported
overhung beam test rig.

It was shown that both control techniques were effective in suppressing their respective
control variables, but any given control law has greatly varying effects on the other
variables in the system. The reason for these differences lies in the modal response of the
structure, and in how a given input (disturbance or control) affects a response variable’s
magnitude and phase in relation to the other inputs of the system.

In general, one cannot assume that structural displacements and reaction forces will
be suppressed simultaneously for an actively controlled system. Furthermore, if reaction
forces are critical, either in their contribution to the health of the structure, or in the
transmission of vibrations to adjoining structures, then one must be mindful of the effect
of displacement control on the reaction forces.
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